Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Acetato(methanol)[N-phenyl-N,N-bis(2-pyridylmethyl)amine]copper(II) hexafluorophosphate

Anne Nielsen, Andrew D. Bond* and Christine J. McKenzie

University of Southern Denmark, Department of Chemistry, Campusvej 55, 5230 Odense,
Denmark

Correspondence e-mail: adb@chem.sdu.dk

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in solvent or counterion
R factor $=0.040$
$w R$ factor $=0.120$
Data-to-parameter ratio $=20.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The title copper complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\left(\mathrm{CH}_{4} \mathrm{O}\right)\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3}\right)\right]$ PF_{6}, of the tridentate ligand N-phenyl- N, N-bis(2-pyridylmethyl)amine (phbpa), displays a distorted octahedral coordination geometry in which the $\kappa^{2} O, O^{\prime}$-acetate ligand approaches a κO-binding arrangement. One O atom of the acetate group also accepts an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $[\mathrm{O} \cdots \mathrm{O}=2.654(2) \AA$ A from a coordinated methanol molecule in a neighbouring complex.

Comment

Crystal structures of two copper(II) complexes incorporating the tridentate ligand N-phenyl- N, N-bis(2-pyridylmethyl)amine (phbpa) have been published previously (Ugozzoli et al., 2002). One is a mononuclear neutral dichloro derivative, (phbpa) CuCl_{2}, and the other involves a dinuclear chlorobridged cation, $\left[(\mathrm{phbpa})_{2} \mathrm{Cu}_{2} \mathrm{Cl}_{3}\right]^{+}$. In both cases, copper(II) displays a distorted trigonal-bipyramidal coordination geometry. Octahedral cationic complexes $\left[(\mathrm{phbpa})_{2} M\right]^{2+}$ have also been reported for Ni and Rh (Hazell et al., 2000; Bjernemose et al., 2003).

(I)

In the cation of the title complex, (I) (Fig. 1), atom Cu 1 displays distorted octahedral coordination geometry (Fig. 2 and Table 1). The three N atoms of the phbpa ligand are approximately coplanar with Cu 1 (the maximum deviation from the least-squares plane through the four atoms is $0.15 \AA$ for Cu 1), and the $\mathrm{Cu}-\mathrm{O}$ bond to the coordinated methanol molecule lies approximately perpendicular to this plane. The binding geometry of the acetate ligand is such that atom O1 lies $c a 0.85^{\circ}$ from the plane and O 2 forms a somewhat longer contact to Cu 1 at an angle of $\mathrm{ca} 83^{\circ}$ to the plane. The binding mode of the acetate ligand is described as $\kappa^{2} O, O^{\prime}$, although it approaches a κO description. The distorted geometry reflects the limited bite angle of the acetate ligand, coupled with the Jahn-Teller distortion around $\mathrm{Cu}^{\mathrm{II}}$. The $\mathrm{C} 19-\mathrm{O} 2$ bond [1.231 (3) Å] is significantly shorter than $\mathrm{C} 19-\mathrm{O} 1$ $[1.260(3) \AA$] and O 2 also accepts an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond from a coordinated methanol molecule in a neighbouring complex (Fig. 3): $\mathrm{O} 3-\mathrm{H} 3=0.84 \AA, \mathrm{O} 3 \cdots \mathrm{O} 2^{\mathrm{i}}=$

Received 28 January 2005
Accepted 1 February 2005
Online 5 February 2005

Figure 1
View of the cation of the title complex, showing displacement ellipsoids at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The relatively long contact between Cu 1 and O 2 is shown as a dotted line.
$2.654(2) \AA$ and $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}=170^{\circ}$ [symmetry code: (i) $\left.\frac{1}{2}-x, \frac{1}{2}-y,-\frac{1}{2}+z\right]$.

Experimental

$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(17.4 \mathrm{mg}, 0.087 \mathrm{mmol})$ in hot methanol (3 ml), $\mathrm{NH}_{4} \mathrm{Cl}(4.6 \mathrm{mg}, 0.086 \mathrm{mmol})$ in methanol $(0.25 \mathrm{ml})$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ ($231.9 \mathrm{mg}, 1.42 \mathrm{mmol}$) in methanol (2 ml) were added to N-phenylN, N-bis(2-pyridylmethyl)amine (phbpa; $23.8 \mathrm{mg}, 0.086 \mathrm{mmol}$) in methanol (1 ml). Blue-green crystals precipitated overnight at low temperature (ca 250 K).

Crystal data

[$\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\left(\mathrm{CH}_{4} \mathrm{O}\right)-$
$\left.\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3}\right)\right] \mathrm{PF}_{6}$
$M_{r}=574.94$
Orthorhombic, $P b c n$
$a=18.8196$ (7) \AA
$b=18.4938$ (8) \AA
$c=13.5023$ (6) \AA
$V=4699.4$ (3) \AA^{3}
$Z=8$

Data collection

Bruker-Nonius X8APEX-II CCD diffractometer
Thin-slice ω and φ scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.759, T_{\text {max }}=0.864$
76538 measured reflections

$$
\begin{aligned}
& D_{x}=1.625 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 6956 \\
& \quad \text { reflections } \\
& \theta=2.9-27.3^{\circ} \\
& \mu=1.07 \mathrm{~mm}^{-1} \\
& T=180(2) \mathrm{K} \\
& \text { Block, blue-green } \\
& 0.22 \times 0.16 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

7042 independent reflections
5365 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=30.4^{\circ}$
$h=-26 \rightarrow 26$
$k=-26 \rightarrow 26$
$l=-17 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.120$
$S=1.05$
7042 reflections
346 parameters
H-atom parameters constrained

Figure 2
The coordination geometry of Cu 1 .

Figure 3
$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between one O atom of the acetate ligand and a coordinated methanol molecule in a neighbouring complex.

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9519(15)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.0856(17)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.9650(17)$	$\mathrm{Cu} 1-\mathrm{O} 3$	$2.3376(16)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.9655(18)$	$\mathrm{Cu} 1-\mathrm{O} 2$	$2.6235(18)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$97.04(7)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 3$	$82.39(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$98.47(7)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$85.13(6)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$162.35(7)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 3$	$91.11(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$162.21(7)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 2$	$103.72(7)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$84.03(7)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$92.11(7)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$83.79(7)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 2$	$107.53(6)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$106.65(7)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 2$	$160.77(6)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.84	1.82	$2.654(2)$	170
Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}-y, z-\frac{1}{2}$.				

While one $\mathrm{PF}_{6}{ }^{-}$anion is well ordered (located on an inversion centre), the second (containing P2 and lying on a twofold axis) shows extensive rotational disorder. This disorder was approximated by modeling the $\mathrm{PF}_{6}{ }^{-}$anion in two orientations, each with 50% site occupancy and restrained geometries. Anisotropic displacement

metal-organic papers

parameters were refined for all F atoms, showing considerable distortion approximately around the surface of a sphere centered on P 2 . Modeling the F atoms with isotropic displacement parameters gives $w R$ ca 0.18 and a significantly less satisfactory refinement for the remainder of the structure (i.e. the geometry and standard uncertainties). Attempts to treat the disordered $\mathrm{PF}_{6}{ }^{-}$anion with a continuous solvent-area model (SQUEEZE; van der Sluis \& Spek, 1990; Spek, 2003) were unsuccessful. H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent refinement, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the H atoms of the pyridyl rings, $\mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the methylene groups, and $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl groups. Atom H3, associated with the coordinated methanol molecule, was located in a difference Fourier map, then moved along the $\mathrm{O} 3-\mathrm{H} 3$ vector to give $\mathrm{O}-\mathrm{H}=0.84 \AA$. It was subsequently allowed to ride on O 3 with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

Data collection: APEX2 (Bruker-Nonius, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the Danish Natural Science Research Council (SNF) and Carlsbergfondet for provision of the X-ray equipment.

References

Bjernemose, J., Hazell, A., McKenzie, C. J., Mahon, M. F., Nielsen, L. P., Raithby, P. R., Simonsen, O., Toftlund, H. \& Wolny, J. A. (2003). Polyhedron, 22, 875-885.
Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker-Nonius (2004). APEX2. Version 1.0-22. Bruker-Nonius BV, Delft, The Netherlands.
Hazell, A., McKenzie, C. J. \& Nielsen, L. P. (2000). Polyhedron, 19, $1333-$ 1338.

Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sluis, P. van der \& Spek, A. L. (1990). Acta Cryst. A46, 194-201.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Ugozzoli, F., Massera, C., Lanfredi, A. M. M., Marsich, N. \& Camus, A. (2002). Inorg. Chim. Acta, 340, 97-104.

